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Abstract 

Researchers have been investigating the potential rewards of utilizing motion capture for linguistic analysis, but have encountered 
challenges when processing it. A significant problem is the nature of the data: along with the signal produced by the signer, it also 
contains noise.  The first part of this paper is an exposition on the origins of noise and its relationship to motion capture data of signed 
utterances. The second part presents a tool, based on established mathematical principles, for removing or isolating noise to facilitate 
prosodic analysis.  This tool yields surprising insights into a data-driven strategy for a parsimonious model of life-like appearance in a 
sparse key-frame avatar. 
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1. A simple case study as motivation 

Noise is an unwanted modification to motion capture data 

that occurs during recording.  The following example 

illustrates how noise poses barriers to the analysis of 

prosodic structure. Figure 1 is a time graph taken from a 

motion capture session [1].  It displays the y-coordinate 

(height) of the right wrist over a two-second period at the 

beginning of the sentence ‘Newspaper said there was an 

awful storm in Florida where homes, cars, and trees were 

destroyed.’  The first two seconds contain the signs 

‘NEWSPAPER READ’.   

Although the signal looks smooth to the casual observer, 

problems arise when using the data to compute changes in 

speed as a precursor to examining the prosody of an 

utterance. 

 

Figure 1:  Height information for a right wrist marker. 

Determining changes in speed is a two-step process.  The 

first computes the speed from the marker’s position data 

using a central difference approximation for the derivative:  
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Figure 2 is a graph of the wrist marker’s speed.  The curve 

contains many small spikes which are due to the noise 

contained in the original position data.   

 

Figure 2: Speed of right wrist. 

The second step computes the change in speed, which is 

essential for studying prosody: 
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Figure 3 is a graph of the result.  The spikes are even larger 

and dominate the curve. This jagged curve gives the 

impression of jerky motion, but the original position graph 

in Figure 1 reflects the smoothly flowing discourse of a 

fluent signer as confirmed in the original video. 

The noise that was barely perceptible in Figure 1 has been 

magnified to the point where it is difficult to use visual 

inspection to identify any aspect in the prosodic structure 

of the utterance. From this example, it is clear that the 

motion capture data contains noise, but the question 



 

 

remains as to its origins and severity. Effective analysis 

requires its isolation and/or removal. 

 

Figure 3:  Change in right wrist speed 

2. Fundamentals and terminology of signal 

processing 

This section takes the form of a brief tutorial, outlining the 

principles of signal processing used to clean a motion 

capture data stream.  These principles are applicable to the 

analysis of any time series data, including motion capture.  

The interested reader can find a more in-depth treatment in 

[2]. 

Several important concepts of signal processing can be 

analyzed from an idealized production of the word 

BICYCLE in American Sign Language (ASL).  In this sign, 

the height of the right hand oscillates vertically in a regular 

manner similar to the idealized graph shown in Figure 4.   

Since the horizontal axis of this graph is time, this plot is 

said to be in the time domain.    

 

Figure 4: Height data of a wrist from an idealized 

production of BICYCLE. 

The size of the oscillation is called the amplitude of the 

signal, whereas the speed at which the hand moves through 

the oscillation is its frequency.  Amplitude is measured in 

units such as millimeters (mm), and frequency is measured 

in cycles per second also known as Hertz (Hz).   

Unfortunately, the signal is rarely as simple as in Figure 4. 

Returning to Figure 1, the oscillations in the graph show 

variation in both their length and size. Thus, these 

oscillations change in both amplitude and frequency over 

the course of the phrase. To analyze more complicated 

signals, we need the Fourier transform [3], which 

decomposes a signal into a collection of contributing pure 

oscillations.  Figure 5 shows a density plot, analogous to a 

histogram, of all the oscillations present in the signal from 

Figure 1. This plot is called the signal’s spectrum in the 

frequency domain, since it displays the strengths of the 

signal’s oscillations at various frequencies, which are 

shown on the horizontal axis.  

 

Figure 5: Frequency spectrum of the wrist height during 

the first 2 seconds of the phrase 

This spectrum was constructed with a Fourier transform on 

the original time-domain signal, and yields a list of 

amplitudes in the frequency domain, which we can then 

analyze and edit.  As an example, we return to the question 

of noise.  Figure 6 contains a plot of the signer’s right wrist 

height while standing still with arms raised in a calibration 

posture.   

 

 

Figure 6: Time and frequency domain plots of signer with 

arms up 

An analysis of the right wrist height and its resulting 

spectrum yields one main low-frequency oscillation with a 

spread of smaller amplitudes at higher frequencies.  These 

are very fast, but tiny oscillations around a slow variation 

of the wrist height that occurs as the signer attempts to hold 

still.   

Returning to the motion in Figure 5, we see a more 

complicated profile with a main high amplitude signal at 



 

 

low frequencies and then a smooth falloff in amplitude at 

higher frequencies. Their small amplitudes indicate that 

these fast oscillations contribute little to the signal. It is this 

noise that software needs to remove before meaningful 

analysis can be performed.   

For our purposes, removing unwanted high frequencies 

will not alter the main signing signal.  We do this by means 

of a low-pass filter, which sets all the frequency amplitudes 

above a certain threshold to zero.  After the suppression of 

these amplitudes, we can recover the cleaned signal by 

inverting the Fourier transform, yielding a smoother 

trajectory for the wrist.  The cleaned signal will rarely 

deviate from the original by more than a fraction of a 

millimeter.  In our study, over 99% of the samples deviated 

by less than a millimeter.   

3. Analyzing Noise in Sign Language 

Motion Corpora 

This section discusses practical considerations for 

determining which frequencies are relevant to linguistic 

research and which can be safely considered as noise. 

Figure 7 contains a conceptual diagram of a spectrum for a 

coordinate value of a position marker in the frequency 

domain.  The vertical axis is amplitude and the horizontal 

axis is frequency.   

 

Figure 7: Conceptual regions of positional data graphed in 

the frequency domain. 

The frequency spectrum in this diagram is divided into 

three sections which have different impacts on sign analysis.  

We begin with the region marked “3”, representing 

frequencies above 12 Hz.  According to [4], the muscles in 

the human body cannot create oscillations faster than 10-

12 Hz, and so the frequencies in this region can thus be seen 

as noise attributable to fluctuations in the recording 

technology.  These frequencies can safely be eliminated 

before performing further analysis of the signal.  

Frequencies slower than 10-12Hz, in regions 1 and 2, may 

be produced by human motion. However, not all such 

frequencies of motion have linguistic meaning for sign 

language.  This can be clearly seen by looking at the types 

of motion that the human body produces in sign discourse 

and the oscillations of parts of a signer’s body involved in 

such motion. On the slower end of the scale, oscillations on 

hip markers correspond to such linguistic processes as role 

shift. Due to the sheer mass involved in moving the human 

torso, these motions will have lower frequencies of no more 

than 0.5 Hz. In contrast, fingers being of much lower mass 

and smaller movements, are capable of higher frequencies, 

such as the motion displayed in fingerspelling or in internal 

movement such as trilling (WAIT, FINGERSPELL), but 

even here the cutoff is no more than 4 Hz as can be seen in 

analyses of finger spelling rates[5].   

Thus, the region in the diagram marked “1” contains the 

main low frequency movements generated by sign 

language production. The cutoff for this region will depend 

on a marker’s placement, with lower frequencies for 

markers on the trunk of the body and higher frequencies at 

more distal markers. Table 1 gives a set of empirically-

determined frequency cutoffs for intermediate markers. 

These limits are deliberately conservative to assure that no 

aspect of a human linguistic utterance is being 

compromised. 

Joint Frequency (Hz) 
Hips 0.25 
Waist 0.5 
Upper spine 0.5 
Neck 1.0 
Shoulders 1.0 
Elbow 2.0 
Wrist 2.0 

Table 1: Frequency cut offs for selected markers. 

For linguistic analysis, we can clean the position data by 

converting it to the frequency domain, setting the amplitude 

of the frequencies in regions 2 and 3 to zero, and using the 

modified spectrum to reconstitute the marker’s position in 

the time domain via an inverse Fourier transform.  From 

the cleaned data, we proceed with the calculations for speed 

and speed change.  The resulting graphs shown in Figure 8 

do not exhibit the spikes seen in Figures 2 and 3. 

 

 

Figure 8: Speed and change of speed computed with 

cleaned position data 
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4. A new tool 

To aid in isolating or removing noise from motion capture 

data, we created a software suite called SignCleaner to aid 

in the signal processing of motion capture data of signed 

utterances.  The system accepts HTR, a common format of 

motion capture data [6] and can accommodate any number 

of markers.  The suite is available for download at 

http://tinyurl.com/jfysn2t and consists of two parts.  The 

first part is a C# application that translates HTR data into a 

comma delimited (.csv) file compatible with the R 

statistical computation environment [7].  The second part is 

a collection of R scripts that perform the following:  

 Removing noise (cleaning) marker data using a 

Butterworth filter, which is based on a Fourier 

transform [8]. A Butterworth filter tapers the 

attenuation of the frequencies being removed for a 

highly smooth result. Researchers can adjust the 

frequency cutoffs to best accommodate their 

analyses. 

 Computing speed and change of speed for each 

marker.  Since these are scalar metrics, they lend 

themselves to easy visualization in the time domain. 

 Visualizing the data to facilitate inspection for 

patterns or trends.  

 Exporting the position, speed and speed change of 

markers as a CSV file, suitable for use in ELAN [9]. 

The tool has been validated on a subset of the Wilbur 

corpus [10], consisting of 58 markers with 9400 data points 

per marker. Figure 9 shows a screen shot of an ELAN 

session, showing a segment of the speed and change of 

speed of the right wrist sensor.  For comparison, both 

measures are computed with the cleaned position data and 

the original, uncleaned data.  The lighter curves in each 

track show the results from the original noisy position, 

whereas the darker curves are computed from the cleaned 

data. 

 

Figure 9: Elan interface for motion plot analysis 

5. A novel finding and its application to 

avatar technology 

Our previous discussion of Figure 7 did not consider the 

entire spectrum, so we return to it now.  From the diagram, 

we know that we want to eliminate the frequencies in 

region 3 as they are noise introduced by the recording 

technology. Further we want to retain the frequencies in 

region 1 for linguistic analysis. This leaves region 2, which 

contains frequencies that are not of linguistic significance, 

but are none the less created by a human while producing 

signed utterances.   From the perspective of linguistic 

analysis, this is noise, but from the perspective of avatar 

technology, this is valuable information for enlivening an 

avatar. 

In order to create the illusion of life, avatars must continue 

to move, even when a signed discourse has concluded.  A 

living human body is never completely still, even when at 

rest, and the human mind and visual sense are highly 

attuned to expect this dynamic.  An avatar at rest needs to 

continually display subtle movements to avoid being 

perceived as a static image. This is a particular challenge 

for sparse-key animation systems [11] 

In entertainment technology, two common techniques used 

to maintain the dynamics of an avatar are  

 the manual adjustment of motion curves by an 

animation artist [12], and  

 the introduction of Perlin noise.   

Since hand animation is time-consuming and expensive, 

Perlin noise is preferred because it can be automated [13].  

Perlin noise can be tuned to a specific set of frequencies 

[14] and is therefore ideal for this situation.  We can tune 

this type of noise so that it primarily contains frequencies 

in region 2, the enlivening frequencies, and these will be 

perceptible in the finished animation.  Figure 10 shows the 

frequency spectrum for a version of Perlin noise tuned to 

roughly match the three regions of Figure 7.  

 

Figure 10: Spectrum of Perlin noise 

The frequencies in this plot are essentially bounded on the 

right, and so there are very few high frequencies 

corresponding to region 3.  In addition, the amplitudes of 

its low frequencies in region 1 are small enough so that the 

addition of this noise will not interfere with any intended 

animations such as a signed utterance.  Since the range of 

frequencies is bounded on both the lower and upper ends, 

it corresponds nicely with enlivening region 2 of Figure 7. 

Traditionally, Perlin noise is only applied in situations 
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where the avatar has otherwise stopped moving, however 

an abrupt transition to Perlin noise is incompatible with the 

high fidelity motion required to make avatar signing easily 

legible.  Attempts to gradually introduce Perlin noise do not 

improve the problem, and can introduce jarring 

discontinuities in the motion. 

6. An insight from motion capture data 

A heatmap facilitates further exploration the presence of 

noise in the motion capture data by visualizing the 

relationship of frequency and amplitude with time in the 

signal. Figure 11 displays a heatmap of the 

amplitude/frequency profile over an entire recording 

session computed using a sliding discrete Fourier transform 

[15].  In this visualization, the x-axis displays the frequency, 

the y-axis displays time, and the amplitude is displayed as 

a grayscale intensity with darker intensities representing 

higher amplitudes. The regions labeled in this figure 

correspond to regions in Figure 7. For frequencies in region 

3 that are greater than 12Hz, the noise is nearly constant 

over the entire time range.  This is to be expected since this 

noise does not come from human movement, but rather 

from the recording equipment itself.  

  

Figure 11: Heatmap of amplitude vs frequency and time 

for right wrist height 

The frequencies in region 2 are too high to warrant 

linguistic analysis, but are still produced by a human signer.  

The heatmap demonstrates that these frequencies are 

present throughout the entire discourse, whether the signer 

is producing utterances or is at rest. From a linguist’s 

perspective, this is noise and can safely be ignored, but 

from an animator’s perspective, region 2 frequencies are 

actually invaluable, as they can be used to enliven the 

avatar. These data inform us that these frequencies must be 

present whenever an avatar is signing or is at rest. 

Observers do not perceive these frequencies as noise during 

signing, since the frequencies of the signed utterances have 

comparatively higher amplitude. These high-amplitude 

motions produced by signing overwhelm the subtle 

changes created by the lower amplitude frequencies from 

region 2.   

To further investigate the relationship between noise and 

signing, we examine a representative clip of the height of 

the right wrist marker during two sentences which begin 

and end with the signer at rest. We will focus on a frequency 

of 5Hz which lies in the enlivening region of the heat map.  

A vertical slice of the heatmap at 5Hz, corresponding to the 

dotted line in Figure 11, can be plotted with time on the x-

axis and the amplitude at 5Hz on the y-axis.  Figure 12 

shows the graph of the portion of this signal corresponding 

to the small rectangle in Figure 11. Active signing in this 

segment occurs between times 24 and 30 seconds. The 

signer is at rest at the onset and conclusion of the segment. 

The conventional expectation would be that the amplitudes 

for this particular frequency should be lower while the 

person is signing. Yet in this example we find exactly the 

opposite. Counterintuitive as it is, the enlivening 

frequencies are not just present, but actually increase in 

amplitude in the center of this graph, during which the 

signer is actively producing utterances. So, when adding 

noise to enliven an avatar, we should not suppress or turn 

off that noise when the avatar is signing. Figures 11 and 12 

thus provide additional evidence that we should apply these 

enlivening frequencies throughout an avatar’s signing. 

 

Figure 12: Amplitude of wrist height at 5Hz  

for two sentences 

7. Implementation 

To add enlivening frequencies to the avatar, we apply Perlin 

noise generators to each joint using the frequency ranges 

dictated by region 2. The generators run continually, and 

independently, of any utterances produced by the avatar. 

The exception to this is the blinking action of the avatar’s 

eyelids.  Blinking is a discrete movement that needs to be 

controlled with a separate mechanism which is outside the 

scope of this paper [15] [16]. 

There is one additional consideration required when setting 

up the Perlin noise generators, as they also require 

knowledge of amplitude. This information is easily 

obtainable from the spectrum of each marker and is 

summarized in Table 2. Because our avatar requires angle 

data for its joint rotations, we capitalize on the fact that 

𝑠𝑖𝑛(𝜃) = 𝜃  for small 𝜃 , thus easily converting the 

positional data into rotational data. 

The Perlin noise generators add a modest computational 

cost, but if the avatar is being used in an environment where 

computing resources are limited, then implementing a 

single generator on the hips is an effective choice as the 

hips will transmit subtle motion, albeit coordinated, to the 

rest of the avatar’s skeleton, even in the absence of noise 

on the other joints. [17]. 
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Joint Amplitude (degrees) 
Hips 6.37 x 10-3 
Waist 4.78 x 10-3 
Upper spine 4.78 x 10-3 
Neck 2.39 x 10-3 
Shoulders 2.39 x 10-3 
Elbow 2.39 x 10-3 
Wrist 2.39 x 10-3 

Table 2: Amplitudes (noise strengths) for Perlin noise 

generators. 

8. Results 

To test this approach, we applied Perlin noise generators to 

all the joints in the avatar’s spinal column (hips, waist, 

upper spine, and neck) and arms (shoulder, elbow, and 

wrist).  More distal joints were given noise with lower 

amplitudes and higher frequencies as indicated in Tables 1 

and 2. The generators are active throughout the entire 

animation, regardless of whether the avatar is signing or not.  

The reference http://tinyurl.com/zzl8btc is a link to a video 

demonstrating the effect.  The video contains a side-by-side 

comparison of animations with and without Perlin noise 

generators. The animation on the left has no noise, while 

the one on the right has noise applied to all joints previously 

mentioned. When at rest, the figure on the left has the 

appearance of a static photograph, whereas the figure on 

the right continues moving subtly.  The noise does not 

interfere with the portrayal of the signed utterances.   

This approach is well accepted by test participants who 

view and rate our avatar’s utterances for clarity and 

naturalness.  In a developing a mathematical model for role 

shift as reported in [18], Deaf participants fluent in ASL 

viewed and rated animations that incorporated this livening 

method. A majority of the participants rated clarity as either 

“clear” or “very clear” on a 5-point Likert scale. A follow-

up study [19] yielded similar results.  Clarity was a 

particularly important measure here, because it tested 

whether noise was interfering with the avatar’s signing.  

The results indicate that applying noise to an avatar’s joints, 

with frequencies and amplitudes appropriately tuned 

according to the results of the study of motion capture data, 

are effective in enlivening an avatar without impeding the 

avatar’s ability to communicate.   

9. Future work 

We look forward to testing the scalability of SignCleaner 

by applying it on larger corpora.  We also plan to use it for 

its original intended purpose of prosodic analysis. In 

addition, we will add the ability to import other motion 

capture formats. 
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