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Abstract
Fingerspelling is a process of communicating letters of a spoken language alphabet 
using a person’s hand or hands. Portraying animations of fingerspelling has proved 
surprisingly resistant to automation because of the collisions that arise from con-
ventional interpolation of keyframes of individual manual letters. Previous methods 
have not been able to provide convincingly realistic fingerspelling due to the absence 
of effective collision avoidance in the underlying animation algorithms. This paper 
reports on the development and evaluation of a new collision avoidance algorithm 
that aids fingerspelling. Instead of analyzing letter transitions, the algorithm capi-
talizes on the transitions of individual fingers. The new strategy is efficient enough 
to support real-time fingerspelling while still maintaining a high level of predictive 
accuracy. Utilizing this strategy in signing avatars is expected to improve the cur-
rent resources for deaf children, hearing teachers, hearing parents, and interpreting 
students who want to improve their fingerspelling comprehension. Future work will 
include testing the strategy’s generality when applying it to other one-handed man-
ual alphabets.

Keywords  Sign language · Fingerspelling · American sign language · Collision 
avoidance · Sign language synthesis

1  Introduction

Fingerspelling is a process of communicating letters of a spoken language alphabet 
using a person’s hand or hands. In American Sign Language (ASL), fingerspelling is 
used to spell people’s names, technical terms, places without a lexical sign, and can 
also convey loan words from another language.

According to Calderon (2000), fingerspelling recognition is considered an impor-
tant communication skill for deaf children, interpreting students, hearing teachers, and 
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hearing parents. Whether used in a sign language or in a manual communication sys-
tem, fingerspelling is an important communication technique for the members of the 
deaf and hard-of-hearing communities. This includes students requiring interpretation, 
parents and teachers of deaf children, as well as service providers who interact with the 
deaf and hard-of-hearing communities (Padden and Ramsey 1998). The potential ben-
efits of fingerspelling skill include better deaf access to health, education, employment, 
and better interpreter training (Schick 2005).

Fingerspelling reception is notoriously difficult for hearing people to master (Mckee 
1992), (Shipgood and Pring 1995). Fingerspelling is the first topic presented or taught 
during interpreter training (Padden and Gunsauls 2003). Nonetheless, it is the last topic 
learners master (Shaffer and Watson 2004).

Due to the challenges of acquiring fingerspelling recognition skills, most teachers 
who instruct deaf students and most parents of deaf children are not adequately skilled 
in fingerspelling, so many of them depend on interpreters. Another problem is under-
qualified interpreters. It is easier to acquire fingerspelling production skills as opposed 
to fingerspelling reception skills (Patrie and Johnson 2011). According to Antona and 
Stephanidis (2015), even experienced interpreters mention fingerspelling as a top prior-
ity for more training. A survey of newly certified interpreters shows that they believe 
that the skill that they still need to improve is fingerspelling reception (Padden and 
Ramsey, 1998; Ebling et al., 2015).

Why is fingerspelling reception so hard? Basically, the reasons are classified into 
two major contributing factors: the nature of fingerspelling itself and the lack of prac-
tice opportunities (Antona and Stephanidis 2015; Toro et al. 2014).

The nature of fingerspelling itself acts as an obstacle to is reception. It is rare to 
perfectly produce the individual handshapes that comprise a fingerspelled word (Patrie 
and Johnson 2011). Fingerspelling is not simply formed as a series of static letters but 
as a smoothly changing movement in which the fingers do not stop while transitioning 
between letters (Wilcox 1992; Calderon 2000). Instead of being a sequence of static 
words, fingerspelling is a continuously flowing motion involving the constant move-
ment of fingers, which does not pause following handshape formation (Akamatsu 
1982). In fact, Akamatsu notes that when deaf children acquire fingerspelling produc-
tion skills, they will mimic the motion of the fingerspelled word before they master the 
individual letters.

Therefore, it is difficult for signers to produce individual manual letters in a picture-
perfect manner within fingerspelled words (Antona and Stephanidis 2015). Handshapes 
used to form manual letters are largely influenced by both succeeding and preceding 
letters, suggesting the presence of coarticulation. Because it is a continually flowing 
motion, fingerspelling involves continually changing hand movements and the signer’s 
hand will not pause even after having formed a suitable handshape (van Zijl and Raitt 
2004). Merely studying the stationary positions of manual letters does not guarantee 
word recognition (Antona and Stephanidis 2015).
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2 � Related work

The second contributing factor to the barrier to fingerspelling fluency is the lack 
of self-study materials and limited practical opportunities for students (Wolfe et al. 
2015). According to Guillory (1966), there are numerous textbook materials rec-
ommending pair practice while learning to fingerspell. However, peer classmates 
frequently serve as partners during practice. Fellow students, unfortunately, cannot 
produce smooth fingerspelling (Antona and Stephanidis 2015). They can also not 
produce fingerspelling at fluent speeds (Guillory 1966). Instructors are not suitable 
practice partners. They have demanding schedules so face-to-face practice sessions 
become difficult to provide for individual students. With such barriers, automated 
software that improves fingerspelling reception serves as the best alternative to stu-
dents for self-study (Antona and Stephanidis 2015). For these reasons, non-comput-
erized approaches are unsuitable for providing fingerspelling practice.

Current computerized approaches for fingerspelling generation include video 
recordings, use of snapshots, video resynthesis, and three-dimensional animation 
via an avatar. Nonetheless, all of these approaches have limitations. In the 1990s, 
DVDs designed for practicing fingerspelling emerged (Jaklic et al. 1995), but add-
ing new words to an extant DVD is not practical. In 2000, web-based applications 
appeared that uses sequences of static images (flashcards) of manual letters to spell 
words (Vicars 2005). The site software rearranges the images in any order and pro-
duces new words. Figure 1 an example of fingerspelling flash- cards. It can spell any 
word, but it does not have the capability to produce the smoothly flowing motion of 
natural fingerspelling. Natural fingerspelling does not pause at each letter, so this 
method does not provide benefit to students who need to witness the flowing transi-
tions between letters.

A third approach promises to retain the realism of prerecorded video while striv-
ing to achieve the flexibility of the flashcard approach. Stoll et al. (2018) are work-
ing to generate newly signed video sequences from previously recorded video via 
Neural Machine Translation. Currently, they are focusing on gross motor movement 
and are not considering the finer detail of fingerspelling. The work is preliminary as 
their generated sequences have not been evaluated by the Deaf community.

There is a fourth option, a three-dimensional avatar, that has the potential to 
combine the strengths of the three previously described approaches. It can por-
tray the smoothly flowing motion of a fluent signer while offering the vocabulary 

Fig. 1   Example of flashcards fingerspelling J-O-I-N
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extensibility and flexibility of the flashcard approach. However, fingerspelling has 
proved surprisingly resistant to display by avatar because of the collisions that arise 
from conventional interpolation of the keyframes defining individual manual let-
ters. Between many pairs of letters, straightforward interpolation may often lead to 
collisions of fingers, especially in cases of letters for which the handshape is in a 
closed posture. This often occurs when the thumb crosses the palm or the fingers 
are bent. Figure 2 shows three frames from a computer animation and three frames 
from a recording of a human performing fingerspelling. There are no collisions in 
the human performance, but a naïve computer animation does not prevent collisions. 
In this case, the avatar’s thumb passes through, not around, the index finger.

Previously researchers attempted to address this problem through either pre-com-
puted letter transitions or procedurally through the classification of manual letters. 
The pre-computed approach renders the transition between every letter pair (Li, Lj), 
and stores it as a separate video clip. The clips are concatenated to produce a video 
of a fingerspelled word. Figure  3 demonstrates how video clips produce a finger-
spelled word. The animation consists of three video clips depicting the transitions 
“T ≥ U”, “U ≥ N” and “N ≥ A” (Wolfe et al. 2015).

Unfortunately, prerendering every letter pair grows as the square of the number 
of letters in the alphabet. Even worse, this approach requires an expensive manual 
step where an artist inspects each letter-pair transition for collisions and adds ani-
mation keys to remove any collisions that occur. Thus, the approach does not scale 
well. From a complexity theory viewpoint, the approach is only processing a finite 

Fig. 2   Transition from N to A: comparison of an actual, virtual hand
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number of letters, but the 26 letters of the English alphabet are at the practical limit 
of production. Other languages (German and Arabic) have more letters in their 
alphabet (Ebling et  al. 2015). Because the transitions are all prerendered, there is 
limited flexibility in varying the fingerspelling coarticulation to simulate different 
fingerspelling styles. There is an additional weakness in producing repeated letters 
since the position of the hand changes requires more prerendering when repeating 
a letter. For example, to repeat the ASL letter ‘N’, the index and middle fingers are 
fused, held out straight, and then tapped against the thumb in a repeated motion. 
This necessitates an additional computation.

Based on the limitations of the previous approaches to displaying fingerspelling, 
there is a need for a procedurally based approach to address the collision avoidance. 
A procedurally based system has the potential for improved robustness. Carefully 
designed, a procedurally based approach could handle multiple one-hand manual 
alphabets without requiring the lengthy and expensive preprocessing step. One 
previous effort used this approach. The van Zijl and Raitt (2004) collision avoid-
ance model for ASL used a procedural method that grouped the letters into sets and 
developed finite automata to govern the transitions between letters. However, this 
method has the same disadvantage of requiring a manual (human) analysis step, and 
as presented, only applied to the ASL manual alphabet. So, there was still a need for 
an approach that could generalize to other alphabets without requiring an initial step 
of manual analysis.

3 � A new approach

This paper describes a new collision-avoidance approach to support the transitions 
between pairs of finger configurations rather than pairs of manual letters. It capital-
izes on the physiology of the human hand to develop efficient and effective colli-
sion avoidance strategies automatically. The new strategy for collision avoidance is 
efficient enough to support real-time fingerspelling. The classification algorithm uti-
lizes an intuitive set of geometric relationships between thumb and fingers. It forms 
the basis of applying an avoidance strategy. Although the current paper reports on 
the results of applying this method to the ASL manual alphabet, one of the advan-
tages of using transitions between pairs of fingers instead of pairs of letters is that 
the approach has the potential of being language-neutral and can be applied to any 
one-handed manual alphabet.

Fig. 3   Transitions of a fingerspelling animation
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4 � Method

Two data sets and one corpus informed the creation of the new collision avoidance 
strategy. The data sets are from the data used to animate the American Sign Lan-
guage Avatar at DePaul University and have undergone numerous evaluations with 
members of the Deaf community in the United States (Davidson 2000). The research 
could have used data sets from any signed language for this step, but at present the 
necessary data was only available in ASL. Descriptions of the two data sets are in 
the list that follows:

1.	 A data set of linguistic descriptors that have geometric interpretations as let-
ters in the ASL manual alphabet (henceforth called “LettersDataset”). This data 
formed the basis for creating an animation containing a sequence of all 262 = 
676 transitions between two letters of the ASL manual alphabet. The animation 
is nothing more than interpolations through each letter and is unnatural in appear-
ance because it contains many collisions. This gives us a baseline animation that 
proves useful for the analysis of collision detection. This animation is called 
“BaseAnimation”.

2.	 A data set of collision corrections (henceforth “CorrectionsDataset”). This data 
was created by artists who manually identified two-letter transitions containing 
collisions. They then added or modified the animation keys of the transition to 
remove collisions. This data is stored in the CorrectionsDataset. This data set is 
indexed by the two-letter transition containing a collision, such as “AN”, “AB”, 
etc. There may be multiple records for a single two-letter transition because mul-
tiple joints may require adjustments to avoid collisions. Each record has the fol-
lowing fields:

1.	 The two-letter transition is containing a collision, as mentioned above.
2.	 The name of the joint that needs to change the path to avoid a collision.
3.	 Rotation key applied to the joint to avoid the collision.

When applied to the BaseAnimation, the motions in the CorrectionsDataset yield 
animations that have been consistently judged by Deaf and hearing observers as 
being error-free (Wolfe et al. 2006) and natural in motion (Ebling et al. 2015).

In addition to the two data sets, the method also used a corpus of previously-
recorded videos. This corpus consists of fingerspelling sessions previously recorded 
and annotated at DePaul University. The goal of the annotations was to provide data 
to study potential collisions and the strategies that human takes to avoid finger colli-
sions (Baowidan et al. 2017).

4.1 � Preparatory data analysis

Instead of analyzing interactions between letters as a whole, the analysis focused on 
the interactions between individual fingers and the thumb. Reviewing the Correc-
tionsDataset reveals the two-letter transitions that created collisions and noted where 
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the collisions took place. Since the index is the finger closest to the thumb and has 
the second-highest collision rate with the thumb (Table 1), I focused on the relation 
between the thumb and the index finger and then applied the results on the other 
three fingers. Although the thumb touches the pinky, it does not go past it the way 
that it can cross by the other three fingers. The angles in the LettersDataset deter-
mined the position of the thumb tip and the index finger’s tip.

4.2 � Classification scheme

Focusing on the thumb and index finger, several patterns emerged. Collisions 
between these two digits occur in three basic cases. For simplicity, assume the 
thumb tip is radial to the index finger in letter Li:

A.	 Ulnar + Above: Letter Li+1 has the thumb tip located ulnar to the index
	   finger. The transition from A to B is an example. See Fig. 4A. In the DePaul 

avatar system, the coordinates used for Ulnar testing are the x-coordinates of the 
thumb tip and the index finger distal interphalangeal joint (DIP) joint in palm 
coordinates. The Above test compares the z-coordinate of the thumb tip and the 
index finger DIP in palm coordinates.

B.	 Ulnar + Under: Letter Li+1 has the thumb tip located ulnar to the index
	   finger and underneath it. The transition from A to N is an example. See Fig. 4B. 

In the DePaul avatar system, the Under test uses the y-coordinates of the thumb 
tip and index DIP joint in palm coordinates.

C.	 Ulnar + Over: Letter Li+1 has the thumb tip located ulnar to the index

finger and covering it. The transition from A to S is an example. See Fig. 4C. The 
Over test uses the same information as the Under test.

Table 1   Collision between 
individual fingers and the thumb

Finger Collisions

Index 85
Middle 126
Ring 42
Pinky 3

Fig. 4   A Radial  ≥   Ulnar + Above; B Radial  ≥ Ulnar + Under; C Radial ≥ Ulnar + Over
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4.3 � Basic motions for collision avoidance

Studies of the CorrectionsDataset of manually created collision avoidance anima-
tions (source 2) and the annotated corpus (source 3) yields the following three basic 
motions for avoiding collisions:

1.	 Thumb Delay: It may be sufficient to delay the thumb’s movement until the fin-
gers have moved out of the thumb’s path. The thumb will delay its movement to 
make way for the index finger movement. This basic motion will avoid a collision 
between the thumb and index finger for any letters where the thumb begins on 
the radial side of the hand and ends on the ulnar side of an extended index finger 
such as A to B, A to V, or L to H.

2.	 Finger Flip: To accommodate the progression of the thumb to an “under” posi-
tion, the base joints of the covering fingers will rotate upward before moving 
into their final position. For example, consider the transition of the thumb as it 
moves from the radial side of the hand (as in the letter A) to a position that is 
under and to the ulnar side of the index finger as in the letter M. The index finger 
will straighten to make way for the thumb movement. This will avoid a collision 
between the thumb and index finger for any letters where the thumb begins on 
the radial side of the hand and ends on the ulnar side of the index finger, such as 
A to T, A to N, L to M.

3.	 Thumb Swing: To accommodate the progression of the thumb to an “over” posi-
tion, it will need to move outwards from the palm to allow the fingers to move 
into their final position. For example, consider the transition of the thumb as it 
moves from the radial side of the hand (as in the letter A) to a position that is ulnar 
and covering the index finger as in the letter S. The thumb will move outward of 
the palm, so it does not collide with the index finger. This will work for avoiding 
a collision between the thumb and index finger for any letters where the thumb 
begins on the radial side of the hand and ends on the ulnar side of the index finger 
and covering it such as A to S, A to I.

Each of these basic actions adds intermediate keys between the two hand poses at 
letters Li and Li+1, similar to those that were manually added by the artist in the Cor-
rectionsDataset database. The Thumb Delay function adds intermediate keys that 
are replicas of the thumb keys of letter Li. The intermediate keys added by the Fin-
ger Flip function straighten the (index) finger. The Thumb Swing function adds keys 
that slightly straighten the thumb’s proximal and distal interphalangeal joints and 
rotates the thumb’s metacarpophalangeal joint (Figs. 5, 6, 7).

4.4 � Combining basic motions

Using a single basic motion will address the transition types listed in the last section 
but will not solve the following three situations:
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1.	 The transition is from Ulnar + Above to Radial. This is simply the reverse of the 
Radial to Ulnar + Above transition. Instead of being delayed, the thumb must 
speed up. See Fig. 8. The keys inserted on the thumb between letters Li and Li+1 
now duplicate the thumb keys of Li+1 instead of Li.

2.	 The transition from Ulnar + Under to Ulnar + Over. An example is M to

Fig. 5   Avoiding collision via thumb delay (Radial  ≥   Ulnar + Above)

Fig. 6   Avoiding collision via finger flip (Radial ≥ Ulnar + Under)

Fig. 7   Avoiding collision via thumb swing (Radial ≥  Ulnar + Over)
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	   S. Collisions of this type can be avoided by applying the basic motion Finger 
Flip followed by Thumb Swing. Figure 9 demonstrates the resulting motion.

3.	 The transition from Ulnar + Over to Ulnar + Under. This is the reverse of the 
previous case. An example is S to M. Collisions of this type can be avoided by 
applying Thumb Swing followed by Finger Flip. See Fig. 10.

Detecting collisions between the thumb and the middle finger, and collisions 
between the thumb and the ring finger follow a similar pattern. Instead of using the 
position of the index DIP joint and the thumb tip, the detection system for the thumb 
and middle finger utilizes the positions of the middle fingertip and the thumb tip. 
The difference in the finger joint comes from the shift to the hand’s radial side that 
occurs when the middle finger curls toward the palm (Mcdonald et al. 2001). Apply-
ing the approach to the thumb and ring finger is similar.

This approach takes advantage of the physical limitations of the human hand, so 
the number of cases is manageable. The thumb is capable of crossing over only the 
index, middle, and ring fingers. Although outside the scope of this study, it is worth 
noting that few crossings between fingers are physically possible and are limited to 

Fig. 8   Avoiding collision through thumb speed (Ulnar + Above ≥ Radial)

Fig. 9   Avoiding collision through finger flip followed by thumb swing (Ulnar + Under ≥ Ulnar + Over)

Fig. 10   Avoiding collision through thumb swing followed by finger flip (Ulnar + Over ≥  Ulnar + Under)
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adjacent fingers. Since the new approach is only considering the physiology of the 
hand, it is handshape/alphabet independent. The approach is sufficiently general that 
it should be able to successfully avoid thumb-finger collisions in any one-handed 
manual alphabet.

The algorithm was prototyped using Maxscript in the 3d animation package 
3dsmax (Murdock 2011) to classify the finger transitions and generate the finger-
spelling animations. The new approach classifies the relationship between the two 
digits and takes evasive action as laid out in Table 2. The basic motions for avoiding 
a collision are simple and straightforward. Their effectiveness lies in predicting the 
need to apply them.

A video depicting these basic avoidance motions is available at http://​sltat.​cs.​dep-
aul.​edu/​2019/​baowi​dan.​mp4

5 � Validation

5.1 � Data source

•	 new approach (my algorithm)
•	 "conventional (automatic detection, Foley and Van Dam 1982).
•	 manual (artist visual inspections of animations for collisions/CorrectionsDataset)

Validation was not straightforward because there was no definitive ground truth. 
Instead, two sources of data were used to evaluate the new algorithm’s predictive 
power. The first data set was generated by software written in Maxscript using a con-
ventional Sutherland-Hodgman algorithm collision detection algorithm (Foley and 
Van Dam 1982). It tested transitions between letter pairs {(Li, Lj) | Li, Lj {Manual 
alphabet} & Li = Lj} stored in the BaseAnimation file to identify the index finger 
transitions containing collisions with the thumb. When the software detected a colli-
sion, it added the letter pair to a list. The second source of data was already available 
in the Corrections- Dataset. This data set contains the animations previously cre-
ated manually by artists to avoid collisions. Access to individual collision avoidance 

Table 2   summarizes the collision avoidance necessary for each type of transition between the thumb and 
the index finger

The “Ulnar + Under” to “Ulnar + Under” case refers to transitions such as M to N. The label “No action” 
means that there will not be a collision, so no action is necessary

Radial Ulnar + Above Ulnar + Under Ulnar + Over

Radial No action Delay thumb Finger flip Thumb swing
Ulnar + Above Speed thumb No action No action Thumb swing
Ulnar + Under Finger flip No action Finger flip Finger flip, 

then thumb 
swing

Ulnar + Over Thumb swing Thumb swing Thumb swing, then 
finger flip

No action

http://sltat.cs.depaul.edu/2019/baowidan.mp4
http://sltat.cs.depaul.edu/2019/baowidan.mp4
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animations in the CorrectionsDataset is through the letter pair (Li, Lj) requiring the 
avoidance animation in its transition. A first computation of a confusion matrix com-
pared the list of letter pairs identified by the new approach to the list generated by 
conventional detection, and a second computation of a confusion matrix compared 
the list of letter pairs of the new approach to the list of letter pairs stored in the Cor-
rectionsDataset. The results of the two comparisons were sufficiently inconsistent as 
to warrant a comparison of the manual approach to the conventional approach.

5.2 � Examining the data sources

The next step was to evaluate the consistency between the list of letter pairs gener-
ated by the conventional collision detection algorithm, and the list of letter pairs 
retrieved from the artist’s manually created collision avoidance animation. The next 
computation of a confusion matrix compared the list of letter pairs generated by 
the conventional (automatic) approach to the list of letter pairs of the manually cre-
ated avoidance animation. The confusion matrix is in Table 3. Again, the manual 
collision method is the approach that requires artists to visually inspect animations 
for collisions.It is notable that the number of collisions detected by the conven-
tional detection method is nearly three times greater than the number of collisions 
detected by the manual method. In this confusion matrix, a Type I error corresponds 
to the case where the manual method predicted no collision, but the conventional 
method found a collision. This disparity warranted further analysis since the manual 
approach had been vetted in several evaluation studies involving users fluent in ASL.

A deeper investigation reveals that many of these Type I errors occurred in 
transitions involving the letters G, H, P, and Q, as can be seen in Table 4.When 
a signer produces these letters, the palm is either facing downwards (P, Q) or 
inwards toward the body (G, H). The artists missed these collisions. An addi-
tional set of Type I errors stems from the difference between the properties of 

Table 3   Confusion matrix 
of conventional approach vs. 
manual approach

Conventional: 
no collision

Manual: no 
collision

Row total

Manual: collision 78 178 256
Conventional: collision 8 386 394
Column total 86 564 650

Table 4   Manual approach type 
I errors

Letter Count Transitions

G 17 GA GB GD GE GF GI GJ GK GL GM GO 
GP GR GV GW GX GY

H 6 HA HL HN HP HT HY
P 13 PA PC PD PG PH PJ PL PO PQ PS PT PX PY
Q 9 QA QF QJ QK QL QM QI QP QX
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human flesh and the properties of polygon meshes. Polygons are rigid objects. 
Human muscle and skin are flexible. Figure 11 demonstrates the difference. Both 
pairs of images demonstrate the thumb/finger interaction that occurs when pro-
ducing the letter F. When humans touch a thumb to an index finger, the pads of 
both digits flatten, but do not intersect. When a polygon mesh assumes an analo-
gous position, the pad of the index finger will move through the surface of the 
thumb pad. Such a position will be recognized as a collision by a conventional 
collision detection algorithm.

There is one additional source of Type I errors. A further inspection of the 
geometry reveals that the poses for A, D, E, I, J, S, and Z have collisions that 
have been deemed undetectable by human test participants but are identified as 
collisions in the conventional method see Fig. 12.

In the confusion matrix, a Type II error corresponds to the case where the 
manual approach predicted a collision, but the conventional method did not 
detect one. In this case, the manual approach will be applying one of the evasive 
motions to avoid a collision that is not there.

The manual approach was previously judged as perceptually correct by human 
test participants. The conventional approach identifies collisions algorithmi-
cally through the application of mathematics to the geometric representation of 
the hand. However, the two approaches, deemed correct in their own context, do 
not produce consistent results due to the method used to detect collisions. This 
knowledge will help set the context for examining the performance of the new 
approach.

Fig. 11   Difference between the properties of human flesh and the properties of polygon meshes
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6 � Effectiveness of the new approach

Table 5 contains the confusion matrix for the new approach as compared to the con-
ventional approach. Type I errors correspond to the cases that are labeled by the 
conventional method as collision but were predicted by the new method as no col-
lision. Many of these cases are caused by several letters (A, D, I, and J) that have a 
collision built into them, which was detected by the conventional method. The new 
approach did not classify them as a collision see Fig. 13.

Fig. 12   Front close-in of letter A, in default shading and in wireframe

Fig. 13   Side close-in of letter D, in default shading and in wireframe
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In this analysis, Type II errors correspond to the cases where the new approach 
predicts a collision, but the conventional approach says that there is no collision. 
This means that basic motions may be applied where there is no need to. Adding 
evasive motion where none is necessary can be as distracting to a viewer as a colli-
sion. See Table 6 for a list of these cases.

However, a deeper analysis of the Type II errors yields the following insights: of 
the 194 Type II errors, the majority (184 cases) are collisions classified as requiring 
a change in the thumb speed. Only 10 cases were classified as needing a Finger Flip. 
In Table 7, the first and second rows show the cases that contain transition from/to 
letter M or N. These two-letter transitions involve the thumb moving to/from a posi-
tion underneath fingers which naturally requires flipping fingers as a human signer 
would produce it. In the transition from S to Q, the thumb needs to swing outwards 
first to allow the index to move to its final position. In the Q to Y transition, there is 
a slight brushing between the thumb and index finger as the index finger moves from 
an extended to a curled position.

In contrast to a finger flip, a change in thumb speed is not adding motion but is a 
perceptually subtle change, because only the timing of the thumb changes, not the 
positioning of the fingers.

Table 5   Confusion matrix of 
conventional approach vs. new 
approach

New 
approach: 
collision

New 
approach: no 
collision

Row total

Conventional: collision 209 47 256
Conventional: no collision 194 200 394
Column total 403 247 650

Table 6   The 10 cases which 
were classified as index finger 
needing a Finger Flip

M ≥ E
M ≥ N
M ≥ T
T ≥ M
N ≥ E
N ≥ M
N ≥ T
E ≥ N
S ≥ Q
Q ≥ Y

Table 7   Confusion matrix 
of manual approach vs. new 
approach

Manual: 
collision

New approach: 
no collision

Row total

New approach: collision 78 7 85
Manual: no Collision 325 240 565
Column total 403 247 650
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Table 7 contains the confusion matrix comparing the new approach to the manual 
approach. Not surprisingly, these results are quite different from those in the confu-
sion matrix comparing the new approach to the conventional approach.

The 7 cases of Type I error were checked closely. They fall into one of two cat-
egories: either above to covered or above to above. The two categories do not need 
correction even if they were marked as collisions. See Table  8.As expected, the 
number of Type II errors is much higher because there are fewer collisions detected 
overall with the manual method. Human artists visually detected collisions and 
missed those poses where the fingers were not facing the viewer’s perspective, for 
instance, transitions involving letters H, G, P, and Q.

7 � Discussion

There are challenges involved in analyzing the performance of the new approach, 
based on the fact that there is not an objectively perfect representation of actual con-
ditions. The first basis for comparison is the conventional approach based on the ava-
tar’s hand geometry which does not accurately model the behavior of human muscle 
and skin. As demonstrated, the conventional geometry approach identifies multiple 
hand poses as having collisions where a human viewer has judged that none exist. In 
contrast, the second basis for comparison, the manually classified collisions, lacked 
a large number of collisions because the artists simply could not see them.

When compared with the conventional approach, the new approach has 
an accuracy of (200 + 209)/650 = 63 percent, and a misclassification rate of 
(47 + 194)/650 = 37 percent. However, a further examination of the 47 type I errors 
shows that although the conventional algorithm detected collisions in 44 of them, 
user studies have previously demonstrated that none of the 44 are detected as inter-
secting from a perceptual basis. Although there are 194 type II errors, only ten tran-
sitions predicted to collide by the new method will cause the addition of extraneous 
motion of finger flipping.

When compared to the manual approach, the new approach has an accuracy of 
(78 + 240)/650 = 49 percent. Of the misclassifications, the vast majority of them 
(325) are type II errors, where the new algorithm predicted a collision, but the man-
ual method did not. This is attributable to a large number of collisions that were sim-
ply missed by the artists who visually inspected animations for the collision.

A compelling advantage of this new approach is that it is automated. It does not 
require manual intervention by artists to painstakingly identify each collision by 
inspection and design an animation to avoid it. A second compelling advantage is its 

Table 8   Type I error transitions, 
classification, and avoidance 
actions

Transitions Classification Evasive 
action 
required

CT GN GT XN XT Ulnar + Above to Ulnar + Over No action
DR RD Ulnar + Above to Ulnar + Above No action
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speed. Its calculation requires a maximum of 12 floating-point operations (flops) per 
finger in a manual letter, and this cost is spread out over the frames of a transition. 
For example, if the avatar is fingerspelling at a pace of three letters per second with 
a refresh rate of 30 frames/second, the computational cost per frame is 12 flop/finger 
× 4 fingers = 48 flops distributed over ten frames for an average per-frame cost of 
under five flops. Thus, it is sufficiently efficient to run in real-time.

8 � Conclusion

This work has focused on implementing a real-time collision detection and avoid-
ance algorithm for fingerspelling animation. The new algorithm can be integrated 
into a real-time avatar, suitable for use in fingerspelling learning and practice 
tools for interpreting students who are studying sign language. The algorithm was 
designed to be language agnostic. Because the algorithm tests transitions between 
pairs of fingers instead of pairs of letters, the hope is that it can accommodate any 
one-handed manual alphabet. The new approach is unlike the old video based or 
pre-rendered approach, which only had one view. It requires minimal computing 
resources to change an avatar from front to other perspectives. outcome of this work 
is expected to improve the current resources for deaf children, hearing teachers, 
hearing parents, and interpreting students for self-study and open the possibility of 
better fingerspelling comprehension. Future work will include creating a real-time 
platform to implement the algorithm and to evaluate its performance on other man-
ual alphabets.

9 � Future work

This study considered only the thumb interaction with the other fingers. To complete 
this approach requires one step beyond the scope of the current research. Future 
work also includes controlling the speed of the thumb delay and the size of the fin-
ger flip. Future researchers should incorporate the linguistic processes of coartic-
ulation and deletion into this new collision avoidance approach for fingerspelling. 
This can help create different fingerspelling styles and allow students to watch/read 
different varieties of fingerspelling. This is analogous to viewing different styles of 
handwriting or listening to different speakers of a spoken language.

Moreover, future studies should investigate the viability of the collision avoid-
ance algorithm in two-handed manual alphabets and other languages than ASL.
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